Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.955
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612542

RESUMO

The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.


Assuntos
Epilepsia , Viroses , Vírus , Humanos , Anticonvulsivantes/uso terapêutico , Doenças Neuroinflamatórias , Viroses/complicações , Viroses/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Biomarcadores
2.
Int J Nanomedicine ; 19: 2889-2915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525012

RESUMO

Since the beginning of the coronavirus pandemic in late 2019, viral infections have become one of the top three causes of mortality worldwide. Immunization and the use of immunomodulatory drugs are effective ways to prevent and treat viral infections. However, the primary therapy for managing viral infections remains antiviral and antiretroviral medication. Unfortunately, these drugs are often limited by physicochemical constraints such as low target selectivity and poor aqueous solubility. Although several modifications have been made to enhance the physicochemical characteristics and efficacy of these drugs, there are few published studies that summarize and compare these modifications. Our review systematically synthesized and discussed antiviral drug modification reports from publications indexed in Scopus, PubMed, and Google Scholar databases. We examined various approaches that were investigated to address physicochemical issues and increase activity, including liposomes, cocrystals, solid dispersions, salt modifications, and nanoparticle drug delivery systems. We were impressed by how well each strategy addressed physicochemical issues and improved antiviral activity. In conclusion, these modifications represent a promising way to improve the physicochemical characteristics, functionality, and effectiveness of antivirals in clinical therapy.


Assuntos
Infecções por Coronavirus , Viroses , Humanos , Antivirais/uso terapêutico , Preparações Farmacêuticas/química , Viroses/tratamento farmacológico , Infecções por Coronavirus/tratamento farmacológico , Sistemas de Liberação de Medicamentos
3.
Viruses ; 16(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543729

RESUMO

Type I interferons (IFN), immediately triggered following most viral infections, play a pivotal role in direct antiviral immunity and act as a bridge between innate and adaptive immune responses. However, numerous viruses have evolved evasion strategies against IFN responses, prompting the exploration of therapeutic alternatives for viral infections. Within the type I IFN family, 12 IFNα subtypes exist, all binding to the same receptor but displaying significant variations in their biological activities. Currently, clinical treatments for chronic virus infections predominantly rely on a single IFNα subtype (IFNα2a/b). However, the efficacy of this therapeutic treatment is relatively limited, particularly in the context of Human Immunodeficiency Virus (HIV) infection. Recent investigations have delved into alternative IFNα subtypes, identifying certain subtypes as highly potent, and their antiviral and immunomodulatory properties have been extensively characterized. This review consolidates recent findings on the roles of individual IFNα subtypes during HIV and Simian Immunodeficiency Virus (SIV) infections. It encompasses their induction in the context of HIV/SIV infection, their antiretroviral activity, and the diverse regulation of the immune response against HIV by distinct IFNα subtypes. These insights may pave the way for innovative strategies in HIV cure or functional cure studies.


Assuntos
Infecções por HIV , Interferon Tipo I , Viroses , Animais , Humanos , Interferon-alfa , Viroses/tratamento farmacológico , Interferon Tipo I/uso terapêutico , Imunidade Inata
4.
J Virol ; 98(4): e0125823, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38546211

RESUMO

Dengue fever, an infectious disease prevalent in subtropical and tropical regions, currently lacks effective small-molecule drugs as treatment. In this study, we used a fluorescence peptide cleavage assay to screen seven compounds to assess their inhibition of the dengue virus (DENV) NS2B-NS3 protease. DV-B-120 demonstrated superior inhibition of NS2B-NS3 protease activity and lower toxicity compared to ARDP0006. The selectivity index of DV-B-120 was higher than that of ARDP0006. In vivo assessments of the antiviral efficacy of DV-B-120 against DENV replication demonstrated delayed mortality of suckling mice treated with the compound, with 60-80% protection against life-threatening effects, compared to the outcomes of DENV-infected mice treated with saline. The lower clinical scores of DENV-infected mice treated with DV-B-120 indicated a reduction in acute-progressive illness symptoms, underscoring the potential therapeutic impact of DV-B-120. Investigations of DV-B-120's ability to restore the antiviral type I IFN response in the brain tissue of DENV-infected ICR suckling mice demonstrated its capacity to stimulate IFN and antiviral IFN-stimulated gene expression. DV-B-120 not only significantly delayed DENV-2-induced mortality and illness symptoms but also reduced viral numbers in the brain, ultimately restoring the innate antiviral response. These findings strongly suggest that DV-B-120 holds promise as a therapeutic agent against DENV infection and highlight its potential contribution in addressing the current lack of effective treatments for this infectious disease.IMPORTANCEThe prevalence of dengue virus (DENV) infection in tropical and subtropical regions is escalating due to factors like climate change and mosquito vector expansion. With over 300 million annual infections and potentially fatal outcomes, the urgent need for effective treatments is evident. While the approved Dengvaxia vaccine has variable efficacy, there are currently no antiviral drugs for DENV. This study explores seven compounds targeting the NS2B-NS3 protease, a crucial protein in DENV replication. These compounds exhibit inhibitory effects on DENV-2 NS2B-NS3, holding promise for disrupting viral replication and preventing severe manifestations. However, further research, including animal testing, is imperative to assess therapeutic efficacy and potential toxicity. Developing safe and potent treatments for DENV infection is critical in addressing the rising global health threat posed by this virus.


Assuntos
Doenças Transmissíveis , Vírus da Dengue , Dengue , Piperidinas , Viroses , Animais , Camundongos , Vírus da Dengue/fisiologia , Camundongos Endogâmicos ICR , Endopeptidases/farmacologia , Dengue/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Viroses/tratamento farmacológico , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/química
5.
Viruses ; 16(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38399945

RESUMO

This review article will describe the (wide) variety of approaches that I envisaged to develop a specific therapy for viral infections: (i) interferon and its inducers, (ii) HSV, VZV and CMV inhibitors, (iii) NRTIs (nucleoside reverse transcriptase inhibitors), NtRTIs (nucleotide reverse transcriptase inhibitors) and NNRTIs (non-nucleoside reverse transcriptase inhibitors) as HIV inhibitors, (iv) NtRTIs as HBV inhibitors, and finally, (v) the transition of an HIV inhibitor to a stem cell mobilizer, as exemplified by AMD-3100 (Mozobil®).


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Viroses , Humanos , Inibidores da Transcriptase Reversa/farmacologia , Fármacos Anti-HIV/uso terapêutico , Viroses/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Desenvolvimento de Medicamentos , Transcriptase Reversa do HIV
6.
Viruses ; 16(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399995

RESUMO

Most plants have developed unique mechanisms to cope with harsh environmental conditions to compensate for their lack of mobility. A key part of their coping mechanisms is the synthesis of secondary metabolites. In addition to their role in plants' defense against pathogens, they also possess therapeutic properties against diseases, and their use by humans predates written history. Viruses are a unique class of submicroscopic agents, incapable of independent existence outside a living host. Pathogenic viruses continue to pose a significant threat to global health, leading to innumerable fatalities on a yearly basis. The use of medicinal plants as a natural source of antiviral agents has been widely reported in literature in the past decades. Metabolomics is a powerful research tool for the identification of plant metabolites with antiviral potentials. It can be used to isolate compounds with antiviral capacities in plants and study the biosynthetic pathways involved in viral disease progression. This review discusses the use of medicinal plants as antiviral agents, with a special focus on the metabolomics evidence supporting their efficacy. Suggestions are made for the optimization of various metabolomics methods of characterizing the bioactive compounds in plants and subsequently understanding the mechanisms of their operation.


Assuntos
Plantas Medicinais , Viroses , Vírus , Humanos , Viroses/tratamento farmacológico , Metabolômica , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo
7.
J Immunol ; 212(7): 1188-1195, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391298

RESUMO

STING-mediated DNA sensing pathway plays a crucial role in the innate antiviral immune responses. Clarifying its regulatory mechanism and searching STING agonists has potential clinical implications. Although multiple STING agonists have been developed to target cancer, there are few for the treatment of infectious diseases. Astaxanthin, a natural and powerful antioxidant, serves many biological functions and as a potential candidate drug for many diseases. However, how astaxanthin combats viruses and whether astaxanthin regulates the cyclic GMP-AMP synthase-STING pathway remains unclear. In this study, we showed that astaxanthin markedly inhibited HSV-1-induced lipid peroxidation and inflammatory responses and enhanced the induction of type I IFN in C57BL/6J mice and mouse primary peritoneal macrophages. Mechanistically, astaxanthin inhibited HSV-1 infection and oxidative stress-induced STING carbonylation and consequently promoted STING translocation to the Golgi apparatus and oligomerization, which activated STING-dependent host defenses. Thus, our study reveals that astaxanthin displays a strong antiviral activity by targeting STING, suggesting that astaxanthin might be a promising STING agonist and a therapeutic target for viral infectious diseases.


Assuntos
Viroses , Xantofilas , Animais , Camundongos , Herpes Simples/tratamento farmacológico , Imunidade Inata , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/metabolismo , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Viroses/tratamento farmacológico
8.
AAPS PharmSciTech ; 25(3): 41, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366178

RESUMO

Viral infections represent a significant threat to global health due to their highly communicable and potentially lethal nature. Conventional antiviral interventions encounter challenges such as drug resistance, tolerability issues, specificity concerns, high costs, side effects, and the constant mutation of viral proteins. Consequently, the exploration of alternative approaches is imperative. Therefore, nanotechnology-embedded drugs excelled as a novel approach purporting severe life-threatening viral disease. Integrating nanomaterials and nanoparticles enables ensuring precise drug targeting, improved drug delivery, and fostered pharmacokinetic properties. Notably, nanocrystals (NCs) stand out as one of the most promising nanoformulations, offering remarkable characteristics in terms of physicochemical properties (higher drug loading, improved solubility, and drug retention), pharmacokinetics (enhanced bioavailability, dose reduction), and optical properties (light absorptivity, photoluminescence). These attributes make NCs effective in diagnosing and ameliorating viral infections. This review comprises the prevalence, pathophysiology, and resistance of viral infections along with emphasizing on failure of current antivirals in the management of the diseases. Moreover, the review also highlights the role of NCs in various viral infections in mitigating, diagnosing, and other NC-based strategies combating viral infections. In vitro, in vivo, and clinical studies evident for the effectiveness of NCs against viral pathogens are also discussed.


Assuntos
Nanopartículas , Viroses , Humanos , Preparações Farmacêuticas/química , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Viroses/tratamento farmacológico , Nanopartículas/química , Antivirais/farmacologia , Antivirais/uso terapêutico
9.
Eur Respir Rev ; 33(171)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38417971

RESUMO

Respiratory viral infections are a major public health problem, with much of their morbidity and mortality due to post-viral lung diseases that progress and persist after the active infection is cleared. This paradigm is implicated in the most common forms of chronic lung disease, such as asthma and COPD, as well as other virus-linked diseases including progressive and long-term coronavirus disease 2019. Despite the impact of these diseases, there is a lack of small-molecule drugs available that can precisely modify this type of disease process. Here we will review current progress in understanding the pathogenesis of post-viral and related lung disease with characteristic remodelling phenotypes. We will also develop how this data leads to mitogen-activated protein kinase (MAPK) in general and MAPK13 in particular as key druggable targets in this pathway. We will also explore recent advances and predict the future breakthroughs in structure-based drug design that will provide new MAPK inhibitors as drug candidates for clinical applications. Each of these developments point to a more effective approach to treating the distinct epithelial and immune cell based mechanisms, which better account for the morbidity and mortality of post-viral and related types of lung disease. This progress is vital given the growing prevalence of respiratory viruses and other inhaled agents that trigger stereotyped progression to acute illness and chronic disease.


Assuntos
Asma , Pneumopatias , Viroses , Vírus , Humanos , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Pneumopatias/tratamento farmacológico , Pulmão , Viroses/tratamento farmacológico , Descoberta de Drogas
10.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339120

RESUMO

Milk is renowned for its nutritional richness but also serves as a remarkable reservoir of bioactive compounds, particularly milk proteins and their derived peptides. Recent studies have showcased several robust antiviral activities of these proteins, evidencing promising potential within zoonotic viral diseases. While several publications focus on milk's bioactivities, antiviral peptides remain largely neglected in reviews. This knowledge is critical for identifying novel research directions and analyzing potential nutraceuticals within the One Health context. Our review aims to gather the existing scientific information on milk-derived antiviral proteins and peptides against several zoonotic viral diseases, and their possible mechanisms. Overall, in-depth research has increasingly revealed them as a promising and novel strategy against viruses, principally for those constituting a plausible pandemic threat. The underlying mechanisms of the bioactivity of milk's proteins include inhibiting viral entry and attachment to the host cells, blocking replication, or even viral inactivation via peptide-membrane interactions. Their marked versatility and effectiveness stand out compared to other antiviral peptides and can support future research and development in the post-COVID-19 era. Overall, our review helps to emphasize the importance of potentially effective milk-derived peptides, and their significance for veterinary and human medicines, along with the pharmaceutical, nutraceutical, and dairy industry.


Assuntos
Proteínas do Leite , Viroses , Animais , Humanos , Proteínas do Leite/química , Peptídeos/farmacologia , Zoonoses , Antivirais/farmacologia , Antivirais/uso terapêutico , Viroses/tratamento farmacológico
11.
Microbiol Spectr ; 12(4): e0001724, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38411087

RESUMO

Tools to advance antimicrobial stewardship in the primary health care setting, where most antimicrobials are prescribed, are urgently needed. The aim of this study was to evaluate OPEN Stewarship (Online Platform for Expanding aNtibiotic Stewardship), an automated feedback intervention, among a cohort of primary care physicians. We performed a controlled, interrupted time-series study of 32 intervention and 725 control participants, consisting of primary care physicians from Ontario, Canada and Southern Israel, from October 2020 to December 2021. Intervention participants received three personalized feedback reports targeting several aspects of antibiotic prescribing. Study outcomes (overall prescribing rate, prescribing rate for viral respiratory conditions, prescribing rate for acute sinusitis, and mean duration of therapy) were evaluated using multilevel regression models. We observed a decrease in the mean duration of antibiotic therapy (IRR = 0.94; 95% CI: 0.90, 0.99) in intervention participants during the intervention period. We did not observe a significant decline in overall antibiotic prescribing (OR = 1.01; 95% CI: 0.94, 1.07), prescribing for viral respiratory conditions (OR = 0.87; 95% CI: 0.73, 1.03), or prescribing for acute sinusitis (OR = 0.85; 95% CI: 0.67, 1.07). In this antimicrobial stewardship intervention among primary care physicians, we observed shorter durations of therapy per antibiotic prescription during the intervention period. The COVID-19 pandemic may have hampered recruitment; a dramatic reduction in antibiotic prescribing rates in the months before our intervention may have made physicians less amenable to further reductions in prescribing, limiting the generalizability of the estimates obtained.IMPORTANCEAntibiotic overprescribing contributes to antibiotic resistance, a major threat to our ability to treat infections. We developed the OPEN Stewardship (Online Platform for Expanding aNtibiotic Stewardship) platform to provide automated feedback on antibiotic prescribing in primary care, where most antibiotics for human use are prescribed but where the resources to improve antibiotic prescribing are limited. We evaluated the platform among a cohort of primary care physicians from Ontario, Canada and Southern Israel from October 2020 to December 2021. The results showed that physicians who received personalized feedback reports prescribed shorter courses of antibiotics compared to controls, although they did not write fewer antibiotic prescriptions. While the COVID-19 pandemic presented logistical and analytical challenges, our study suggests that our intervention meaningfully improved an important aspect of antibiotic prescribing. The OPEN Stewardship platform stands as an automated, scalable intervention for improving antibiotic prescribing in primary care, where needs are diverse and technical capacity is limited.


Assuntos
COVID-19 , Médicos de Atenção Primária , Sinusite , Viroses , Humanos , Antibacterianos/uso terapêutico , Retroalimentação , Pandemias , Padrões de Prática Médica , Atenção Primária à Saúde/métodos , Viroses/tratamento farmacológico , Sinusite/tratamento farmacológico , Ontário
12.
Drug Discov Today ; 29(3): 103888, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244674

RESUMO

With the advancement of globalization, our world is becoming increasingly interconnected. However, this interconnection means that once an infectious disease emerges, it can rapidly spread worldwide. Specifically, viral diseases pose a growing threat to human health. The COVID-19 pandemic has underscored the pressing need for expedited drug development to combat emerging viral diseases. Traditional drug discovery methods primarily rely on random screening and structure-based optimization, and new approaches are required to address more complex scenarios in drug discovery. Emerging antiviral strategies include phase separation and lysosome/exosome targeting. The widespread implementation of these innovative drug design strategies will contribute towards tackling existing viral infections and future outbreaks.


Assuntos
Exossomos , Viroses , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Pandemias , 60422 , Viroses/tratamento farmacológico
13.
Glycoconj J ; 41(1): 1-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244136

RESUMO

Lectins are non-immunological carbohydrate-binding proteins classified on the basis of their structure, origin, and sugar specificity. The binding specificity of such proteins with the surface glycan moiety determines their activity and clinical applications. Thus, lectins hold great potential as diagnostic and drug discovery agents and as novel biopharmaceutical products. In recent years, significant advancements have been made in understanding plant and microbial lectins as therapeutic agents against various viral diseases. Among them, mannose-specific lectins have being proven as promising antiviral agents against a variety of viruses, such as HIV, Influenza, Herpes, Ebola, Hepatitis, Severe Acute Respiratory Syndrome Coronavirus-1 (SARS-CoV-1), Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) and most recent Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The binding of mannose-binding lectins (MBLs) from plants and microbes to high-mannose containing N-glycans (which may be simple or complex) of glycoproteins found on the surface of viruses has been found to be highly specific and mainly responsible for their antiviral activity. MBLs target various steps in the viral life cycle, including viral attachment, entry and replication. The present review discusses the brief classification and structure of lectins along with antiviral activity of various mannose-specific lectins from plants and microbial sources and their diagnostic and therapeutic applications against viral diseases.


Assuntos
Lectinas , Viroses , Humanos , Lectinas/metabolismo , Manose , Glicoproteínas , SARS-CoV-2 , Polissacarídeos , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Viroses/tratamento farmacológico , Lectinas de Plantas/farmacologia , Lectinas de Ligação a Manose/química
14.
Viruses ; 16(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257818

RESUMO

Pigs play important roles in agriculture and bio-medicine; however, porcine viral infections have caused huge losses to the pig industry and severely affected the animal welfare and social public safety. During viral infections, many non-coding RNAs are induced or repressed by viruses and regulate viral infection. Many viruses have, therefore, developed a number of mechanisms that use ncRNAs to evade the host immune system. Understanding how ncRNAs regulate host immunity during porcine viral infections is critical for the development of antiviral therapies. In this review, we provide a summary of the classification, production and function of ncRNAs involved in regulating porcine viral infections. Additionally, we outline pathways and modes of action by which ncRNAs regulate viral infections and highlight the therapeutic potential of artificial microRNA. Our hope is that this information will aid in the development of antiviral therapies based on ncRNAs for the pig industry.


Assuntos
MicroRNAs , Viroses , Suínos , Animais , Viroses/tratamento farmacológico , Viroses/veterinária , RNA não Traduzido/genética , Agricultura , Antivirais/farmacologia , Antivirais/uso terapêutico
15.
Biomolecules ; 14(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275759

RESUMO

The existing literature supports the anti-inflammatory, antioxidant, and antiviral capacities of the polyphenol extracts derived from Geranium sanguineum L. These extracts exhibit potential in hindering viral replication by inhibiting enzymes like DNA polymerase and reverse transcriptase. The antiviral properties of G. sanguineum L. seem to complement its immunomodulatory effects, contributing to infection resolution. While preclinical studies on G. sanguineum L. suggest its potential effectiveness against COVID-19, there is still a lack of clinical evidence. Therefore, the polyphenols extracted from this herb warrant further investigation as a potential alternative for preventing and treating COVID-19 infections.


Assuntos
COVID-19 , Geranium , Viroses , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , SARS-CoV-2 , Flavonoides/farmacologia , Fenóis/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Viroses/tratamento farmacológico
16.
J Med Virol ; 96(1): e29369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180269

RESUMO

Broad-spectrum antivirals (BSAs) have the advantageous property of being effective against a wide range of viruses with a single drug, offering a promising therapeutic solution for the largely unmet need in treating both existing and emerging viral infections. In this review, we summarize the current strategies for the development of novel BSAs, focusing on either targeting the commonalities during the replication of multiple viruses or the systemic immunity of humans. In comparison to BSAs that target viral replication, these immuno-modulatory agents possess an expanded spectrum of antiviral activity. However, antiviral immunity is a double-edged sword, and maintaining immune homeostasis ultimately dictates the health status of hosts during viral infections. Therefore, establishing an ideal goal for immuno-modulation in antiviral interventions is crucial. Herein we propose a bionic approach for immuno-modulation inspired by mimicking bats, which possess a more robust immune system for combating viral invasions, compared to humans. In addition, we discuss an empirical approach to treat diverse viral infections using traditional Chinese medicines (TCMs), mainly through bidirectional immuno-modulation to restore the disrupted homeostasis. Advancing our understanding of both the immune system of bats and the mechanisms underlying antiviral TCMs will significantly contribute to the future development of novel BSAs.


Assuntos
Antivirais , Viroses , Animais , Humanos , Antivirais/farmacologia , Quirópteros/imunologia , Quirópteros/virologia , Homeostase , Medicina Tradicional Chinesa , Viroses/tratamento farmacológico , Desenvolvimento de Medicamentos
17.
Ann Pharmacother ; 58(3): 286-304, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37272472

RESUMO

OBJECTIVE: To describe the use of cidofovir (CDV) for viral infections in immunocompromised children (IC) and provide guidance on dosing and supportive care. DATA SOURCES: A PubMed search was conducted for literature published between 1997 and January 2022 using the following terms: cidofovir, plus children or pediatrics. STUDY SELECTION AND DATA EXTRACTION: Limits were set to include human subjects less than 24 years of age receiving intravenous (IV) or intrabladder CDV for treatment of infections due to adenovirus, polyomavirus-BK (BKV), herpesviruses, or cytomegalovirus. DATA SYNTHESIS: Data were heterogeneous, with largely uncontrolled studies. Conventional dosing (CDV 5 mg/kg/dose weekly) was commonly used in 60% (31/52) of studies and modified dosing (CDV 1 mg/kg/dose 3 times/week) was used in 17% (9/52) of studies, despite being off-label. Nephrotoxicity reported across studies totaled 16% (65/403 patients), which was higher for conventional dosing 29 of 196 patients (15%) than modified dosing 1 of 27 patients (4%). Saline hyperhydration and concomitant probenecid remain the cornerstones of supportive care, while some regimens omitting probenecid are emerging to target BKV. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: To our knowledge, this is the first comprehensive review of CDV use (indications, dosing, supportive care, response, and nephrotoxicity) in pediatric IC. CONCLUSIONS: Effective utilization of CDV in IC remains challenging. Further prospective studies are needed to determine the optimal CDV dosing; however, less aggressive dosing regimens such as modified thrice weekly dosing or low dosing once weekly omitting probenecid to enhance urinary penetration may be reasonable alternatives to conventional dosing in some IC.


Assuntos
Organofosfonatos , Viroses , Humanos , Criança , Cidofovir/efeitos adversos , Antivirais/uso terapêutico , Probenecid , Organofosfonatos/uso terapêutico , Citosina/efeitos adversos , Viroses/tratamento farmacológico
18.
Rev Med Virol ; 34(1): e2488, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921610

RESUMO

Bat-borne viruses have attracted considerable research, especially in relation to the Covid-19 pandemic. Although bats can carry multiple zoonotic viruses that are lethal to many mammalian species, they appear to be asymptomatic to viral infection despite the high viral loads contained in their bodies. There are several differences between bats and other mammals. One of the major differences between bats and other mammals is the bats' ability to fly, which is believed to have induced evolutionary changes. It may have also favoured them as suitable hosts for viruses. This is related to their tolerance to viral infection. Innate immunity is the first line of defence against viral infection, but bats have metamorphosed the type of responses induced by innate immunity factors such as interferons. The expression patterns of interferons differ, as do those of interferon-related genes such as interferon regulatory factors and interferon-stimulated genes that contribute to the antiviral response of infected cells. In addition, the signalling pathways related to viral infection and immune responses have been subject to evolutionary changes, including mutations compared to their homologues in other mammals and gene selection. This article discusses the differences in the interferon-mediated antiviral response in bats compared to that of other mammals and how these differences are correlated to viral tolerance in bats. The effect of bat interferons related genes on human antiviral response against bat-borne viruses is also discussed.


Assuntos
Quirópteros , Viroses , Vírus , Animais , Humanos , Linhagem Celular , Pandemias , Interferons/genética , Viroses/tratamento farmacológico , Viroses/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo , Genômica
19.
J Mol Biol ; 436(4): 168380, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061626

RESUMO

Viral infections pose a significant health risk worldwide. There is a pressing need for more effective antiviral drugs to combat emerging novel viruses and the reemergence of previously controlled viruses. Biomolecular condensates are crucial for viral replication and are promising targets for novel antiviral therapies. Herein, we review the role of biomolecular condensates in the viral replication cycle and discuss novel strategies to leverage condensate biology for antiviral drug discovery. Biomolecular condensates may also provide an opportunity to develop antivirals that are broad-spectrum or less prone to acquired drug resistance.


Assuntos
Antivirais , Condensados Biomoleculares , Viroses , Replicação Viral , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Condensados Biomoleculares/efeitos dos fármacos , Viroses/tratamento farmacológico , Viroses/virologia , Replicação Viral/efeitos dos fármacos , Descoberta de Drogas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...